

Messbericht der mobilen Fluglärmmessung in Mannersdorf, Hochleiten

Berichtszeitraum von: 02.10.2018 bis 30.10.2018

S. 13

S. 13

Inhalt

4.2.

4.3.

Abbildungsverzeichnis

Tabellenverzeichnis

1 Einführung S. 3 1.1. Messsystem FANOMOS S. 3 1.2. Messgeräte und Einstellungen 1.3. Standort der Messstation S. 4 2 Erfassung der Schallereignisse 2.1. Methodik und Geräuscherfassung S. 5 2.2. Zuordnung zu Fluglärmereignissen S. 5 3 Auswertung der Fluglärmmessung 3.1. Auswertungsmethode und Erfassungsquoten S. 6 3.2. Überflughöhen der für den Messpunkt relevanten Flugbewegungen S. 6 S. 7 3.3. Einzelpegelverteilung der einzelnen Pisten S. 8 3.4. Einzelpegelverteilung der einzelnen An- und Abflugrouten 3.5. Einzelpegelverteilung der einzelnen Flugzeugtypen S. 9 3.6. Äquivalenter Dauerschallpegel (LEQ) für die verschiedenen Betriebszustände S. 10 3.7. Grafiken zum Verlauf des Dauerschallpegels über den Messzeitraum S. 11 3.8. Grafiken zur Verteilung des Maximalpegels im Messzeitraum nach Windrichtung S. 12 4 Verzeichnisse 4.1. Abkürzungsverzeichnis und Erläuterung der jeweiligen Dauerschallpegel S. 13

Stand 28.02.2019 Seite 2 von 13

1 Einführung

1.1. Messsystem FANOMOS

Mit FANOMOS (Flight Track and Noise Monitoring System) wurde bereits im Jahr 1990 am Flughafen Wien-Schwechat eine Fluglärm-Überwachungsanlage in Betrieb genommen.

FANOMOS misst die Fluggeräuschimmissionen aller startenden und landenden Flugzeuge und zeichnet in Verbindung mit Radardaten die Flugspur, Geschwindigkeit und Flughöhe auf. Weiters liefert das System Daten für die Kontrolle von Lärmzonenberechnungen.

Am Flughafen Wien werden an 15 fixen und 3 mobilen Messstellen in Siedlungsgebieten in der Umgebung des Flughafens die Schallpegel der Überflüge registriert und daraus die Werte für Tages-LEQ (06:00 Uhr - 22:00 Uhr) und Nacht-LEQ (22:00 Uhr - 06:00 Uhr) ermittelt.

Wesentliche Komponenten des Messsystems sind eine wetterfeste Mikrofoneinheit mit Windschirm, ein Messrechner (Analysator), ein GPS-System und eine Kommunikationseinheit, die eine kontinuierliche Datenübertragung gewährleistet. Eine unabhängige Energieversorgung wird mittels Brennstoffzelle gewährleistet.

Für die Geräuschauswertung wird eine spezielle Software eingesetzt, die eine automatische Unterscheidung zwischen Flug- und Fremdgeräusch trifft und eine Zuordnung der Fluginformationen eines in der Nähe befindlichen Flugzeuges durchführt.

1.2. Messgeräte und Einstellungen

Messgerät: Norsonic Typ 140 Mikrofoneinheit: Norsonic 1217 / 1209

Messhöhe über Grund: 4 m

Messbereich: 20 - 130 dB

Frequenzbewertung: A Zeitbewertung: Slow

Ansprechpegel für Ereignisse:

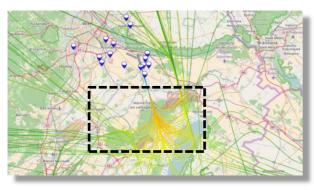
Tag (06:00 Uhr - 22:00 Uhr): 55 dB Nacht (22:00 Uhr - 06:00 Uhr): 50 dB Mindestdauer: 10 Sek.

Eichtechnische Prüfung:

Die verwendeten Messgeräte und Mikrofone entsprechen der Genauigkeitsklasse 0,7 des österr. Maß- und Eichgesetzes, was eine Messgenauigkeit von +/- 0,7 dB ergibt.

Die eichtechnischen Prüfungen erfolgen vorschriftsgemäß alle 2 Jahre in Übereinstimmung mit IEC 60651 Kl. 1, IEC 60804 Kl. 1 und IEC 61672 Kl.1.

Stand 28.02.2019 Seite 3 von 13


1 Einführung

1.3. Standort der Messstelle

Messpunkt: Mannersdorf

Hochleiten

Abb. 1: Übersichtskarte:

... Detailausschnitt

Abb. 2: Detailkarte:

... Messpunkt

Abb. 3: Foto der Messtelle:

Abb. 4: Messgerät und Modemeinheit:

Stand 28.02.2019 Seite 4 von 13

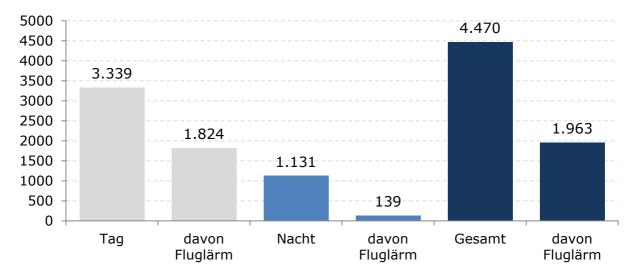
2 Erfassung der Schallereignisse

2.1. Methodik und Geräuscherfassung

Als "Schallereignis" gelten jene Geräusche, die einen Messschwellenwert für eine bestimmte Mindestdauer übersteigen. Hierbei ist zwischen Fluglärmereignissen und Fremdgeräuschen (wie z.B. KFZ, Rasenmäher, ...) zu unterscheiden.

Tab. 1: Schallereignisse am Messpunkt für den gesamten Messzeitraum

registrierte Schallereignisse innerhalb des Messzeitraums							
Tag Nacht Gesamt 06:00 Uhr - 22:00 Uhr 22:00 Uhr - 06:00 Uhr 00:00 Uhr - 24:00 Uhr							
3.339	1.131	4.470					


2.2. Zuordnung zu Fluglärmereignissen

Die Zuordnung zu Fluglärmereignissen basiert auf einer Korrelation mit den Radardaten der österr. Flugsicherung (Austro Control). Hierbei wird die Fluginformationen eines in der Nähe befindlichen Flugzeuges automatisch durchgeführt und manuell überprüft.

Tab. 2: zugeordnete Fluglärmereignisse am Messpunkt für den gesamten Messzeitraum

Abb. 5: Schallereeignisse am Messpunkt

Stand 28.02.2019 Seite 5 von 13

3.1. Auswertungsmethode und Erfassungsquoten

Zur Erfassung der Anzahl aller Flüge im Bereich für den Messzeitraum wurden im Umkreis von 4.000 m um den Messpunkt alle Flugspuren anhand der Radardaten analysiert und den jeweiligen Start- und Landerichtungen zugeordnet.

Tab. 3: Anteil der für den Messpunkt relevanten Flugbewegungen

Landungen Piste 34	davon im Bereich	Anteil
4.066	4.064	100,0%

Tab. 4: Erfassungsquote der für den Messpunkt relevanten Flugbewegungen

relevante Flugbewegungen im Bereich	Anzahl		Erfassungsquote
Landungen Piste 34	4.064	1.412	34,7%

Nicht erfasste Flugbewegungen sind

- Flugbewegungen, welche von Fremdgeräuschen (z.B.: KFZ, Rasenmäher) überlagert wurden
- Flugbewegungen, die aufgrund ihrer Entfernung zum Messpunkt bzw. der Type des Flugzeuges die Mindestdauer bzw. den Mindestpegel nicht erreichen.

3.2. Überflughöhen der für den Messpunkt relevanten Flugbewegungen

Nachstehende Tabelle zeigt die durchschnittlichen Überflughöhen am Messpunkt.

Tab. 5: Überflughöhen der relevanten Flugbewegungen

relevante Flugbewegungen	90% der Flüge waren über	durchschnittliche Höhe
Landungen Piste 34	2.650 ft	2.750 ft

Stand 28.02.2019 Seite 6 von 13

3.3. Einzelpegelverteilung der einzelnen Pisten

Tabelle 6 und 7 zeigen die energetisch gemittelten Einzelpegel in dB(A) der erfassten Fluglärmereignisse am Messpunkt nach Pisten.

Tab. 6: durchschnittliche Einzelpegel für erfasste Landungen pro Piste in dB(A)

Pistenrichtung	Anzahl	Anteil [%]	Ø Pegel [dB(A)]	Min. Pegel [dB(A)]	Max. Pegel [dB(A)]
Piste 11	-	-	-	-	-
Piste 16	-	-	-	-	-
Piste 29	2	0,1	57,6	57,5	57,6
Piste 34	1412	99,9	63,1	55,9	74,5
Gesamt	1414	100,0	63,1	55,9	74,5

Tab. 7: durchschnittliche Einzelpegel für erfasste Starts pro Piste in dB(A)

Abflugstrecken je Pistenrichtung	Anzahl	Anteil [%]	Ø Pegel [dB(A)]	Min. Pegel [dB(A)]	Max. Pegel [dB(A)]
Piste 11	15	2,7	59,6	56,0	62,9
Piste 16	405	71,8	66,4	60,0	71,2
Piste 29	144	25,5	61,7	55,1	67,9
Piste 34	-	-	-	-	-
Gesamt	564	100,0	65,5	55,1	71,2

Anmerkung:

Ø Pegel [dB(A)]energetisch gemittelter Lärmpegel, begrenzt durch Min. Pegel und Max. Pegel

Min. Pegel [dB(A)]niedrigster gemessener Lärmpegel auf der ausgewiesenen Piste

Max. Pegel [dB(A)] ...höchster gemessener Lärmpegel auf der ausgewiesenen Piste

Stand 28.02.2019 Seite 7 von 13

3.4. Einzelpegelverteilung der einzelnen An- und Abflugrouten

Die Tabelle 8 zeigt die energetisch gemittelten Einzelpegel in dB(A), sowie minimale und maximale Pegel der erfassten Fluglärmereignisse am Messpunkt, aufgeteilt nach Abflugstrecken.

Tab. 8: Einzelpegel für erfasste Starts pro Abflugstrecke in dB(A)

Abflugstrecken	Anzahl	Anteil [%]	Ø Pegel [dB(A)]	Min. Pegel [dB(A)]	Max. Pegel [dB(A)]
STEIN4B	109	19,3	65,8	60,0	70,8
ODSUD1A	3	0,5	60,1	56,0	61,6
KOXER1C	17	3,0	62,9	60,2	67,9
IRGOT1A	6	1,1	58,0	56,4	59,0
IMVOB3A	6	1,1	60,5	57,3	62,9
ASPIB2C	65	11,5	61,5	55,1	67,8
ARSIN1B	294	52,1	66,6	60,0	71,2
AGMIM2C	48	8,5	60,6	55,2	63,6
ADAMA2C	13	2,3	63,7	60,6	66,4

Anmerkung:

Es werden nur Abflugstrecken mit mindestens 3 Flugbewegungen ausgewiesen. Eine Übersicht aller Abflugstrecken ist auf www.flugspuren.at in der Rubrik "Flugrouten" abrufbar.

Ø Pegel [dB(A)]niedrigster gemessener Lärmpegel, begrenzt durch Min. Pegel und Max. Pegel Min. Pegel [dB(A)]niedrigster gemessener Lärmpegel auf der ausgewiesenen Abflugstrecke Max. Pegel [dB(A)] ...höchster gemessener Lärmpegel auf der ausgewiesenen Abflugstrecke

Stand 28.02.2019 Seite 8 von 13

3.5. Einzelpegelverteilung der einzelnen Flugzeugtypen

Tabelle 9 zeigt die Verteilung der Einzelpegel der Flugzeugtypen für ausgewählte Pistenrichtungen bzw. Abflugstrecken geordnet nach der Anzahl der verursachten Maximalpegel.

Tab. 9: Einzelpegel der einzelnen Flugzeugtypen für relevante Flugbewegungen in dB(A)

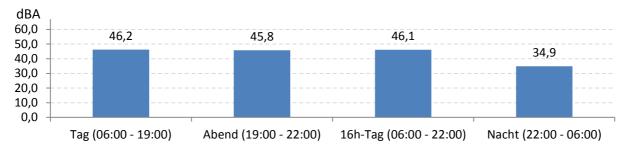
Flugzeugtypen Landungen Piste 34	Code	Anzahl	Anteil [%]	Ø Pegel [dB(A)]	Min. Pegel [dB(A)]	Max. Pegel [dB(A)]
Airbus A320	A320	468	33,1	62,8	55,9	73,5
Airbus A319	A319	245	17,4	63,4	59,7	73,1
Airbus A321	A321	159	11,3	63,4	57,2	73,7
Embraer ERJ 190-100	E190	150	10,6	62,6	59,6	74,5
Boeing 737-800	B738	74	5,2	62,3	58,3	68,3
Boeing 767-300	B763	40	2,8	62,5	60,1	66,0
Boeing 777-200	B772	34	2,4	62,8	58,4	66,3
Boeing 737-500	B735	21	1,5	64,3	61,0	73,0
Bombardier CL-600 Regional	CRJ9	20	1,4	61,8	57,7	64,6
Bombardier DHC-8-400 Dash	DH8D	20	1,4	61,0	58,6	62,5
Airbus A330-200	A332	18	1,3	65,4	60,9	68,2
Boeing 777-300	B773	18	1,3	64,2	60,2	67,2
Boeing 737-300	B733	15	1,1	61,6	60,0	64,8
Boeing 747-400	B744	13	0,9	67,3	64,1	69,9
Boeing 737-700	B737	13	0,9	61,4	56,1	63,7
Airbus A380-800	A388	10	0,7	65,6	61,9	68,8
Airbus A350-900	A359	9	0,6	63,5	60,0	67,1
Boeing 787-8 Dreamliner	B788	9	0,6	62,8	60,7	64,6
Boeing 747-8	B748	8	0,6	67,3	64,6	69,5
Airbur A320neo	A20N	6	0,4	61,1	60,4	61,4
Boeing 777-200LR	B77L	5	0,4	65,5	63,9	67,4
Airbus A318	A318	5	0,4	63,5	61,8	64,9
Boeing 737-900	B739	5	0,4	62,2	60,3	63,8
Boeing 737-600	B736	5	0,4	61,7	60,2	63,0
Boeing 737-400	B734	4	0,3	61,8	60,3	62,8
Typen < 3 Erfassungen	-	38	2,7	62,6	60,0	66,6
Summe Landungen Piste 3	4	1412	100,0	63,1	55,9	74,5

Anmerkung:

Es werden nur Flugzeugtypen mit mehr als 3 Flugbewegungen ausgewiesen.

 \emptyset Pegel [dB(A)]energetisch gemittelter Lärmpegel, begrenzt durch Min. Pegel und Max. Pegel

Min. Pegel [dB(A)]niedrigster gemessener Lärmpegel des ausgewiesenen Flugzeugtypes


Max. Pegel [dB(A)] ...höchster gemessener Lärmpegel des ausgewiesenen Flugzeugtypes

Stand 28.02.2019 Seite 9 von 13

3.6. Äquivalenter Dauerschallpegel (LEQ) für die verschiedenen Betriebszustände

Abb. 6: LEQ für den gesamten Messzeitraum während der Messdauer (Gesamt: 721 Stunden)

Als Information, welche Pistenbetriebsrichtungen am Messpunkt die höhere Schallimmission verursachen, werden die jeweiligen LEQs auch auf jene Zeiträume bezogen, in denen die gleichen Windverhältnisse geherrscht haben (westliche Winde – Windstille – östlichen Winde).

Abb. 7: LEQ bei Pistenbetriebsrichtung "westliche Winde"

325 Stunden im Messzeitraum

Abb. 8: LEQ bei Pistenbetriebsrichtung "Windstille"

112 Stunden im Messzeitraum

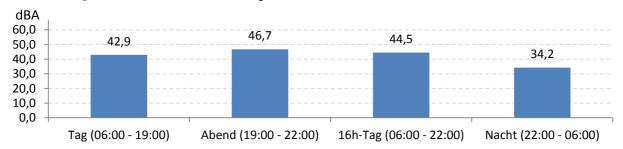
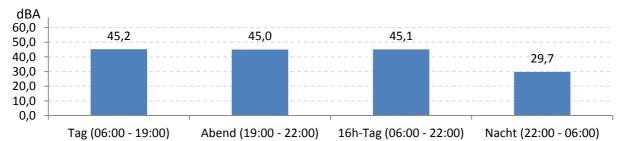
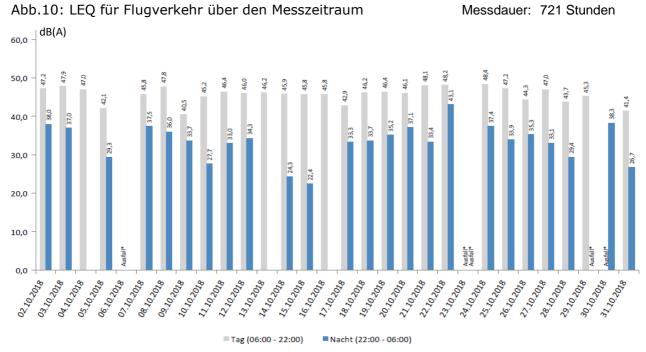
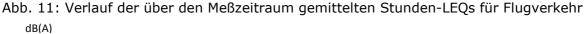



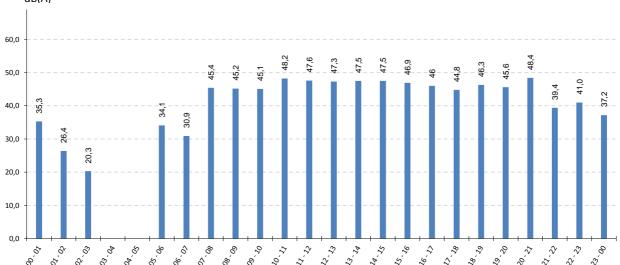
Abb. 9: LEQ bei Pistenbetriebsrichtung "östliche Winde"

284 Stunden im Messzeitraum



Stand 28.02.2019 Seite 10 von 13




3.7. Grafiken zum Verlauf des Dauerschallpegels über den Messzeitraum

Die Grafiken zeigen den Verlauf der täglichen Dauerschallpegel über den Messzeitraum und den Verlauf der über den Messzeitraum gemittelten Stunden-LEQs für Flugverkehr.

^{*} Ausfälle aufgrund von technischen Problemen bzw. zu großen Windgeschwindigkeiten It. DIN 45643

Stand 28.02.2019 Seite 11 von 13

3.8 Grafiken zur Verteilung des Maximalpegels im Messzeitraum nach Windrichtung

Die Grafiken zeigen die Verteilung der einzelnen Lärmereignisse an je einem im Messzeitraum erfassten Westwind-Tag und Ostwind-Tag.

Abb. 12: Verteilung des Maximalpegels bei westlichen Winden

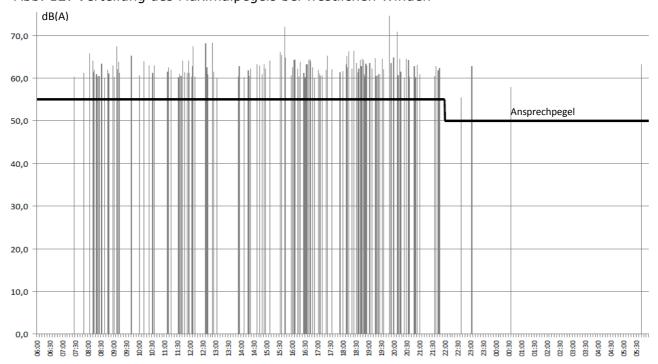
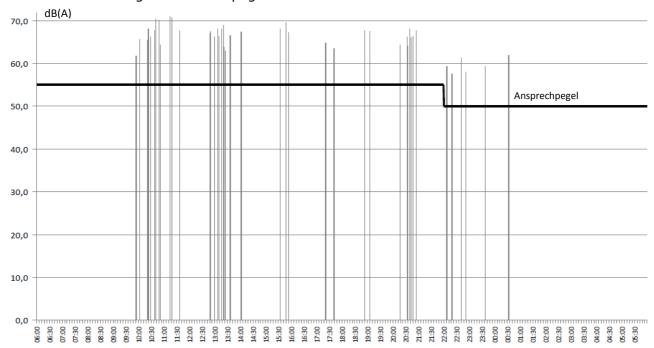



Abb. 13: Verteilung des Maximalpegels bei östlichen Winden

Spitzenpegel und Häufigkeit der Überflüge hängen von den jeweiligen Wetterbedingungen und Flugplänen ab. Trotz gleicher Pistennutzung kann es deshalb zu Unterschieden in der Tagesverteilung kommen.

Stand 28.02.2019 Seite 12 von 13

4 Verzeichnisse

4.1. Abkürzungen und Erläuterung der jeweiligen Dauerschallpegel

Äquivalenter Dauerschallpegel (LEQ):

Energetischer Mittelwert aller durch Flugverkehr verursachten Schallereignisse innerhalb eines gewählten Zeitraumes. Von jedem einzelnen Schallereignis werden ab einem bestimmten Schwellenwert sowohl Spitzenpegel als auch Ereignisdauer erfasst und daraus - einschließlich dazwischen liegender Ereignispausen - ein gesamter Durchschnittswert errechnet.

Tages-LEQ:

Äquivalenter Dauerschallpegel bezogen auf den Tag (06:00 Uhr bis 19:00 Uhr)

Abend-LEQ:

Äquivalenter Dauerschallpegel bezogen auf den Abend (19:00 Uhr bis 22:00 Uhr)

Tages-LEQ (16h):

Äquivalenter Dauerschallpegel bezogen auf 16 Stunden (06:00 Uhr bis 22:00 Uhr)

Nacht-LEQ:

Äquivalenter Dauerschallpegel bezogen auf die Nacht (22.00 Uhr bis 06:00 Uhr)

4.2. Abbildungsverzeichnis

Abb. 1: Übersichtskarte Messpunkt

Abb. 2: Detailkarte Messpunkt

Abb. 3: Foto der Messstelle

Abb. 4: Messgerät und Modemeinheit

Abb. 5: Schallereignisse am Messpunkt

Abb. 6: LEQ für den gesamten Messzeitraum während der Messdauer

Abb. 7: LEQ bei Pistenbetriebsrichtung "westliche Winde"

Abb. 8: LEQ bei Pistenbetriebsrichtung "Windstille"

Abb. 9: LEQ bei Pistenbetriebsrichtung "östliche Winde"

Abb. 10: LEQ für Flugverkehr über den Messzeitraum

Abb. 11: Verlauf der über den Meßzeitraum gemittelten Stunden-LEQs für Flugverkehr

Abb. 12: Verteilung des Maximalpegels bei westlichen Winden

Abb. 13: Verteilung des Maximalpegels bei östlichen Winden

4.3. Tabellenverzeichnis

Tab. 1: Schallereignisse am Messpunkt für den gesamten Messzeitraum

Tab. 2: zugeordnete Fluglärmereignisse am Messpunkt

Tab. 3: Anteil der relevanten Flugbewegungen im Bereich

Tab. 4: Erfassungsquote der relevanten Flugbewegungen

Tab. 5: Überflughöhen der relevanten Flugbewegungen

Tab. 6: Durchschnittliche Einzelpegel für erfasste Landungen pro Piste in dB(A)

Tab. 7: Durchschnittliche Einzelpegel für erfasste Starts pro Piste in dB(A)

Tab. 8: Einzelpegel für erfasste Starts pro Abflugstrecke in dB(A)

Tab. 9: Einzelpegel der einzelnen Flugzeugtypen für relevante Flugbewegungen in dB(A)

Stand 28.02.2019 Seite 13 von 13